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Abstract. Ecohydrological parameters that describe vegetation controls on soil moisture dynamics are not easy to measure at 

hydrologically meaningful scales and site-specific values are rarely available. We hypothesize that sufficient information 

required to determine these ecohydrological parameters is encoded in empirical probability density functions (pdfs) of soil 10 

saturation, and that this information can be extracted through inverse modeling of the commonly used stochastic soil water 

balance. We developed a generalizable Bayesian inference approach to estimate soil saturation thresholds at which plants 

control soil water losses, based only on soil texture, rainfall and soil moisture data at point, footprint, and satellite scales. The 

optimal analytical soil saturation pdfs were statistically consistent with empirical pdfs and parameter uncertainties were on 

average under 10 %. Parameter estimates were most constrained for scales and locations at which soil water dynamics are 15 

more sensitive to the fitted ecohydrological parameters of interest. The algorithm convergence was most successful and the 

best goodness-of-fit statistics were obtained at the satellite scale. Robust and accurate results were obtained with as little as 

75 daily observations randomly sampled from the full records, demonstrating the advantage of analyzing soil saturation pdfs 

instead of time series. A sensitivity analysis showed that estimates of soil saturation thresholds at which plants control soil 

water losses were not sensitive to soil depth and near-surface observations are valuable to characterize ecohydrological 20 

factors driving soil water dynamics at ecosystem scales.  This work combined modeling and empirical approaches in 

ecohydrology and provided a simple framework to obtain analytical descriptions of soil moisture dynamics at a range of 

spatial scales that are consistent with soil moisture observations. 

1 Introduction 

The movement of water from soils, through plants, and back the atmosphere via transpiration, is a critical component of local 25 

and global hydrologic cycles, and is the largest surface-to-atmosphere water pathway (Good et al., 2015). A realistic 

analytical description of soil moisture dynamics is key to understanding ecohydrological processes that regulate the 

productivity of natural and managed ecosystems. Rodrigues-Iturbe et al. (1999) introduced a conceptually simple framework 

using a bucket model of soil-column hydrology forced with stochastic precipitation inputs, where soil water losses are only a 

function of soil saturation. Given this ecohydrological framework, the probability density function (pdf) of soil moisture and 30 

the mean components of the soil water balance are analytically derived and depend on simple abiotic characteristics such as 
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average climate and soil texture, and biotic characteristics including soil saturation thresholds at which vegetation can 

influence soil water losses.  However, the shapes of analytical soil moisture pdfs are generally not consistent with 

observations when literature values for model parameters are used (Miller et al., 2007). Analytical pdfs have never been 

directly compared to empirical pdfs derived from measurements beyond the point scale. Observation networks provide freely 

available point scale, spatially integrated soil moisture observations, while remotely sensed soil moisture observations are 5 

available through satellite products. These data sources create an opportunity to: 1) evaluate whether analytical soil saturation 

pdfs are consistent with observations across a range of scales; and 2) determine ecohydrological parameters relevant to each 

scale. 
 

Estimates of ecohydrological parameters are relevant to a large range of applications for which the stochastic soil water 10 

balance framework has been used and adapted, including: the effects of climate, soil and vegetation on soil moisture 

dynamics (Laio et al, 2001a; Rodrigues-Iturbe et al., 2001; Porporato et al., 2004), ecohydrological factors driving spatial and 

structural characteristics of vegetation (Caylor et al., 2005; Manfreda et al., 2017), soil salinization dynamics (Suweis et al., 

2010), biological soil crusts (Whitney et al., 2017), vegetation stress, optimum plant water use strategies and plant hydraulic 

failure (Laio et al., 2001b; Manzoni et al. 2014; Feng et al., 2017), vertical root distributions (Laio et al., 2006),  plant 15 

pathogen risk (Thomspon et al., 2013), streamflow persistence in seasonally dry landscapes (Dralle et al., 2016), and soil 

water balance partitioning (Good et al., 2014 ; Good et al., http://rdcu.be/yqW7). A survey of close to 400 echoydrology 

publications found that 40% relied heavily on simulation, rarely integrated empirical measurements, and were almost never 

coupled with experimental studies, suggesting a critical need to combine modeling and empirical approaches in 

echohydrology (King and Caylor, 2011). Few studies have directly confronted the governing equations of the stochastic soil 20 

water balance model with observed soil moisture data and fewer have attempted to optimize model parameters to best fit soil 

moisture observations. Miller et al., (2007) calibrated soil moisture pdfs to project vegetation stress in a changing climate.  

Chen et al., (2008) related evapotranspiration observations at the stand scale to soil moisture values using a Bayesian 

inversion approach, and Volo et al., (2014) calibrated the soil moisture loss curve to investigate effects of irrigation 

scheduling and precipitation on soil moisture dynamics and plant stress. The functional form of the soil moisture losses was 25 

approximated using conditionally averaged precipitation (Salvucci, 2001; Saleem and Salvucci, 2002) and remotely sensed 

data (Tuttle and Salvucci, 2014). The time scale of soil moisture dry downs, derived from the soil moisture loss equations, 

were parameterized using evapotranspiration measured at micro-meteorological stations (Teuling et al., 2006) and space-born 

near-surface soil moisture observations (McColl et al., 2017). These studies indicate that the ecohydrological soil water 

balance framework is consistent with ground and remotely sensed measurements.  30 

 

This study expands upon previous work and presents sensitivity tests to generalize the direct inference of ecohydrological 

parameters and associated uncertainty, from observed soil moisture pdfs at a range of scales. We hypothesize that key 

information required to determine the ecohydrological factors driving soil moisture dynamics is encoded in empirical soil 
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saturation pdfs, and that this information can be extracted by calculating the inverse of the commonly used stochastic soil 

water balance. Non-biological controlling factors on the soil water balance can generally be assessed from readily available 

data, including site measurements, regionalized maps, and satellite observations. Vegetation controls on soil water dynamics 

are largely unknown and difficult to measure at hydrologically meaningful scales (Li et. al., 2017). We thus focused on 

estimating parameters that are not generally observable, in particular the soil saturation thresholds at which vegetation 5 

controls soil water losses, through an inverse modelling approach and using data that are commonly collected at 

environmental monitoring sites. Analysis of soil saturation pdfs is a more robust and integrated approach to investigate 

ecohydrological factors of soil water dynamics than time series analysis. Soil saturation pdfs are less sensitive to the many 

sources of uncertainty and common gaps in soil moisture observations and do not require high quality co-located and 

concurrent hydrologic measurements that are often lacking.  A number of studies have combined inverse modeling 10 

approaches with ground and remotely sensed soil moisture data to successfully extract meaningful hydrologic information 

(Xu et al., 2006; Miller et al, 2007; Chen et al., 2008; Volo et al., 2014; Wang et al., 2016; Baldwin et al., 2017). In 

particular, Bayesian inference methods are effective in relating prior pdfs of observations to posterior estimates of model 

parameters (Xu et al., 2006; Chen et al., 2008; Baldwin et al., 2017).  The soil water balance model provides a direct 

analytical equation for soil moisture pdfs that is convenient to use with the Bayesian paradigm because it is a low parameter 15 

model with few data inputs. In this study, we developed a Bayesian inversion approach to directly estimate soil water balance 

model parameters that best fit soil moisture pdfs derived from observations at point, footprint, and satellite scales. The 

Bayesian approach quantifies the interference uncertainty directly and improves upon the work of Miller et al. (2007), which 

used a least-squares approach to calibrate soil saturation pdfs. 

 20 

Parameters that are representative of larger scale observations are necessary to characterize ecohydrological processes at 

ecosystem scales and are more relevant to ecohydrological modelling. In addition, the resulting inference framework provides 

a means to compare the sensitivity of soil moisture dynamics at varying scales to simple ecohydrological parameters. The 

generalization of the proposed approach was evaluated using co-located and concurrent soil moisture observations at the 

point, footprint, and satellite scales. To our knowledge, this is the first study to infer parameters for the analytical model of 25 

soil saturation pdfs for scales beyond point observations. We sought to evaluate 4 key questions necessary to generalize the 

inference of ecohydrological parameters: (1) What is the minimum level of model complexity needed to obtain consistent 

analytical and empirical soil saturation pdfs, and which parameters can be inferred with the most certainty? (2) Are 

ecohydrological parameter estimates sensitive to the soil moisture sensing depth, and can we assume a homogenous soil 

column of a depth greater than the sensing depth? (3) What is the minimum amount of data necessary to estimate 30 

ecohydrological parameters through a Bayesian inversion of soil saturation pdfs? (4) At which scales and sites are 

ecohydrological parameter estimates most accurate and pertinent?  
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The goal of this study was to confront empirical soil moisture pdfs derived from point-, footprint-, and satellite-scale 

observations to a commonly used analytical model. We demonstrate the use of a Bayesian inversion framework to infer the 

ecohydrological parameters of a simple stochastic soil water balance model that best fit empirical soil moisture pdfs. We first 

present data sources, define the analytical model for soil moisture pdfs including parameter assumptions, and detail the 

algorithm used in the Bayesian inversion. Then, we present a summary of the goodness of fit of optimal analytical soil 5 

moisture pdfs and estimated parameter uncertainty for a range of sensitivity tests. Results of sensitivity tests were used to 

define criteria for a generalization of the presented approach to future applications. Finally, we discuss the potential of the 

approach to provide a simple means to investigate variability in ecohydrological controlling factors at varying spatial scales. 

This work combines modelling and empirical approaches in echohydrology to provide more realistic analytical descriptions 

of soil moisture dynamics. Estimates of ecohydrological parameters that are consistent with observed soil moisture pdfs, from 10 

point to ecosystem scales, are needed to better characterize site-specific ecohydrological processes. 

2. Data and Methods 

2.1 Data analysed 

Daily soil moisture observations from three data products at three different spatial scales were used in this study. Point-scale 

soil moisture at 10 cm depth was taken from the FLUXNET2015 data product (http://fluxnet.fluxdata.org/data/fluxnet2015-15 

dataset/). Footprint-scale soil moisture was taken from the Cosmic-ray Soil Moisture Observing System (COSMOS) 

(http://cosmos.hwr.arizona.edu/Probes/probelist.html). The COSMOS soil moisture footprint measures soil moisture at an 

average depth of 20 cm with a radius ranging from 130 to 240 m, depending on site characteristics (Köhli et al., 2015). Near-

surface soil moisture observations at a spatial resolution of 0.25˚ were taken from the European Space Agency’s (ESA) 

Climate change Initiative (CCI) project. The combined soil moisture product (ECV-SM, version 0.2.2) that merges soil 20 

moisture retrievals from four passive (SMMR, SMM/I, TMI, and ASMR-E) and two active (AMI and ASCAT) coarse 

resolution microwave sensors was used (Liu et al., 2011; Liu et al., 2012; Wagner, 2012). Although the ECV-SM sensing 

depth is less than 5 centimeters, it has been shown to have a close relation to ground-based observations of soil moisture in 

the upper 10 centimeters (Dorigo et al., 2015). Daily rainfall time series were compiled from the FLUXNET2015 dataset for 

the point-and footprint-scale analysis, and the National Aeronautics and Space Administration’s (NASA) Tropical Rainfall 25 

Measuring Mission (TRMM) dataset (Huffman et al., 2007) for the satellite-scale analysis. The growing season of May to 

September 2012 was selected for analysis because concurrent rainfall and soil moisture observations for each soil moisture 

and rainfall data product were available during this time period for a maximum number of sites. 

 

In total, 4 sites with data available during April to September 2012 were selected for this analysis (Table 1). Selected sites 30 

span a range of land cover types including crop and grasslands, oak savanna, deciduous forest and pine forest. For each site, 

the dominant soil texture of the upper soil layer was determined from the Harmonized World Soil Database (HWSD) (version 
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1.2) (FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012). Soil porosity values, derived from the HWSD available as ancillary data 

through the ESA-CCI data product were used for the satellite scale analysis. For point- and footprint-scale data products, the 

maximum soil moisture observation during the year 2012 was used as a site-specific soil porosity estimate. Soil porosity for 

each site was applied to compute the relative soil moisture content or soil saturation (0 ≤ 𝑠 ≤ 1) from each observed soil 

moisture value. Soil saturation and rainfall data at each scale and for each site during the selected analysis period are 5 

presented in Fig. 1. All sites had 183 daily point-, and footprint-scale observations and between 109 and 153 daily satellite-

scale observations. We consider that during the selected analysis period May to September 2012 the steady state assumption 

is met. 

 

2.2 Analytical model for soil saturation probability density functions (pdfs) 10 

2.2.1 Model definition  

The framework used in this study is based on a standard bucket model of soil column hydrology at a point forced with 

stochastic precipitation inputs and in which soil water losses are a function of soil saturation. We follow the simple 

formulation of soil water losses in Laio et al. (2001a) and apply the associated analytical formulation for the pdf detailed 

below. However, the methodology described in Sect. 2.3 can be customized to characterize site-specific parameters and test 15 

consistency between observed and analytical soil saturation pdfs for any application or adaptation of the stochastic 

ecohydrological framework. 

 

The soil water balance model is defined at a point scale and a daily time scale, for a soil with porosity 𝑛 and depth 𝑍, and 

assumes soil saturation is uniform in the rooting zone. Rainfall, the only input to the soil water balance, is treated as a 20 

Poisson process characterized by an average event frequency, λ, and average event intensity, α. For simplification, we assume 

that the rainfall applied is equal to the amount reaching the ground surface and do not account for rainfall intercepted by 

vegetation. The daily soil water balance is written as the difference between 𝜑, the rate of infiltration from rainfall and 𝜒, the 

rate of soil moisture losses: 

𝑛𝑍 *+(,)
*,

= 𝜑 𝑠 𝑡 ; 𝑡 − 𝜒[𝑠 𝑡 ]          (1) 25 

𝜑 𝑠 𝑡 ; 𝑡 is a stochastic process controlled by rainfall and is also a state-dependent process, because excess rainfall relative to 

available soil storage is converted to surface runoff.  χ[𝑠(𝑡)], the soil moisture loss curve, is summarized in Fig. 2a and 

includes leakage losses due to gravity and evapotranspiration and is described in stages determined by five soil saturation 

thresholds (Laio et al., 2001a). These stages are: (1) the saturation point (𝑠 = 1), at which all pores are filled with water; (2) 

the field capacity (𝑠56), at which soil-gravity drainage becomes negligible compared to evaporation; (3) the point of incipient 30 

stomata closure (𝑠∗), at which plants begin to reduce transpiration from water stress; (4) the wilting point (𝑠8), at which 

plants cease to transpire; and (5) the hydroscopic point (𝑠9), at which water is bound to the soil matrix. Soil water losses are 
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controlled by physical soil properties for saturation states above 𝑠56. The rate of leakage due to gravity is assumed maximum 

when the soil is saturated (𝐾+) and decays exponentially to a value of 0 at 𝑠56 (Brooks and Corey, 1964). Soil water losses are 

controlled by micro-meteorological conditions for saturation states between 𝑠56  and 𝑠∗ . The rate of evapotranspiration is 

assumed to occur at a constant maximum rate (𝐸<=>). Soil water losses are controlled primarily by vegetation for saturation 

states between 𝑠∗  and 𝑠8. Plants close their stomata in response to soil water deficits that drive leaf water potential gradients, 5 

as well as to atmospheric vapor pressure deficits, and evapotranspiration decreases linearly from 𝐸<=> to 𝐸8 at 𝑠8. Soil water 

losses are controlled by soil diffusivity for soil saturation states below 𝑠8, and soil evaporation decreases linearly from  𝐸8 to 

0 at 𝑠9 . Soil water losses are negligible for soil saturation states below 𝑠9 . The piece-wise linear relation between soil 

saturation and evapotranspiration is a simplifying assumption commonly used is soil water balance models.  

 10 

For this simplified theoretical description of the soil water loss curve and stochastic rainfall forcing, the analytical solution of 

the steady-state probability distributions of soil saturation, 𝑝 𝑠  given by Laio et al. (2001a) is:  

𝑝 𝑠 =

0,																																																																																																																														0 < 𝑠 ≤ 𝑠9,

C
DE

+F+G
+EF+G

H(IEJIG)
KE

FL
𝑒FN+, 																																																																															𝑠9 < 𝑠 ≤ 𝑠8,

C
DE

1 + D
DE
− 1 +F+E

+∗F+E

H I∗JIE
KJKE

FL
𝑒FN+, 																																																			𝑠8 < 𝑠 ≤ 𝑠∗,

C
D
𝑒FN+P

H
K +F+∗ D

DE

H I∗JIE
KJKE

, 																																																																																	𝑠∗ < 𝑠 ≤ 𝑠56,

C
D
𝑒F(QPN)+PQ+RS DTUI

DF< TUIRSP<TUI

H
U(KJV)PL D

DE

H(I∗JIE)
KJKE

T
H
K IRSJI
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,													𝑠56 < 𝑠 ≤ 1,

                      (2) 

where 
L
N
= W

XY
, 15 

𝜂8 =
[E
XY

, 

𝜂 = [V\]
XY

, 

𝑚 = _I

XY(TU `JIRS FL)
, 

𝛽 = 2𝑏– 4. 

where b, is an experimentally determined parameter used in the Clapp and Hornberger, (1978) soil water retention curve and 20 

the constant 𝐶 can be obtained numerically to ensure the integral of 𝑝 𝑠  is equal to 1. This framework was derived under the 

assumption of steady state, wherein parameters are constant for a given period of time.  
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2.2.2 Climate, soil and vegetation parameter characterization 

The rainfall characteristics (𝜆 and 𝛼) and physical soil parameters (𝑠56, 𝑠9, 𝐾+, and b) used in Eq. (2) are based on readily 

available data. We chose values based on our best estimates of the driving climate and physical soil controls on the soil water 

balance. We thus focused on estimating the ecohydrological parameters 𝑠∗, 𝑠8 , 𝐸<=> , and 𝐸8 , which describe vegetation 

controls on soil water losses and are not easily observable. We acknowledge that the pre-defined rainfall characteristics and 5 

physical soil parameters based on observations or literature values may not be perfectly representative of the processes at 

each location or scale and could create biases and uncertainties in our fitted parameters of interest. 

 

Rainfall characteristics 𝜆 and 𝛼 were calculated for each site from the FLUXNET2015 and TRMM rainfall records during the 

selected 2012 growing season following Rodriguez-Iturbe et al. (1984). The FLUXNET2015 rainfall characteristics were 10 

used for the point- and footprint-scale analysis, while the TRMM rainfall characteristics were used for the satellite-scale 

analysis. Physical soil characteristics, 𝑠9, 𝐾+, and b were taken from Rawls et al. (1982) and are listed for each site in Table 1. 

To be most consistent with the assumption that drainage losses are generally insignificant compared to evapotranspiration 

losses the day following a rain event, 𝑠56 was estimated from each soil saturation record and listed in Table 1. All days in the 

2012 record immediately following an observed increase in soil saturation were identified and 𝑠56 was estimated as the 95th 15 

percentile of the soil saturation values on these selected days. The soil saturation pdfs in this study generally indicate that soil 

moisture states below 𝑠8  and above 𝑠∗  are rare, therefore we do not expect the pre-defined values for 𝑠56 , 𝑠9	and 𝐾+  to 

significantly affect results. The framework we present thus considers 4 unknown soil water balance parameters, 𝑠∗, 𝑠8, 𝐸<=> 

and 𝐸8. Our goal is estimate these parameters, as defined over the following intervals: 

𝑠9 ≤ 𝑠∗ ≤ 𝑠56,												
𝑠9 ≤ 	 𝑠8 ≤ 𝑠56,												
0 ≤ 𝐸<=> ≤ 10,									
0 ≤ 𝐸8 ≤ 5																	

		                   (3) 20 

where 10 and 5 mm day-1 are the pre-defined upper possible bounds for potential evapotranspiration and actual 

evapotranspiration at the wilting point. Estimates of 𝑠∗ and 𝑠8 can be converted to soil matrix potential if soil water retention 

parameters are well known.  The Clapp and Hornberger, (1978) soil water retention curve is highly non-linear and estimates 

of soil water potential at which stomata fully are open or closed were not evaluated in this study. 

 25 

2.2.3 Model complexity descriptions 

We considered the following 4 levels of complexity for the soil water loss curve model:   

(i) evapotranspiration decreases linearly from 𝐸<=> to 0 between 𝑠56 and 𝑠9, 

(ii) evapotranspiration is maximum between 𝑠56	and 𝑠∗, then decreases linearly from 𝐸<=>	to 0 between  𝑠∗ and  𝑠9, 
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(iii) evapotranspiration decreases linearly from 𝐸<=>	to 𝐸8  between 𝑠56  and 𝑠8 , then decreases linearly from 𝐸8  to 0 

between 𝑠8 and 𝑠9. We also test a variation of model (iii), assuming 𝐸8 	= 0.05𝐸<=> and call this model (iii’) 

(iv) evapotranspiration is maximum between 𝑠56  and 𝑠∗ , decreases linearly from 𝐸<=>  to 𝐸8  between 𝑠∗and 𝑠8 , then 

decreases linearly from 𝐸8  to 0 between 𝑠8  and 𝑠9 . We also test a variation of model (iv), assuming  𝐸8 	=

0.05𝐸<=> and call this model (iv’). 5 

 

The simplest model (i) has one unknown parameter, and the most complex model (iv), equivalent to the Laio et al., 2001 

model, has 4 unknown parameters. We used the simplifying relation 𝐸8 = 0.05𝐸<=>  to reduce the number of model 

parameters in models (iii’) and (iv’). For iii’ and iv’ a range of  𝐸8/𝐸<=> fractions were tested (not shown), and although 

overall the method was not sensitive to this parameter, 0.05 was selected to provide converging results with low uncertainty. 10 

Models (i) – (iv) are defined in Table 2 and illustrated in Fig. 2. We evaluated models (i) – (iv) to determine which level of 

complexity is consistent with soil moisture observations and which parameters could be estimated with most certainty. 

 

2.3 Bayesian inversion approach 

2.3.1 Application of the Bayes theorem  15 

Bayes' theorem, Eq. (4) is used to relate 𝑝(𝑆), the empirical soil saturation pdf of 𝑗 = [1, … ,𝑚] soil saturation observations 

(𝑠o) and the analytical soil saturation pdfs in Eq. (2), derived from the simple soil water balance model in Eq. (1), with 4 

unknown soil water balance parameters 𝜃 = [𝑠∗, 𝑠8, 𝐸<=>, 𝐸8].  

𝑝 𝜃 𝑆 	= q 𝑆 𝜃 	q(r)
q(s)

                   (4) 

The posterior distribution, 𝑝 𝜃 𝑆 , is the solution of the inverse problem and describes the probability of model parameters 𝜃 20 

given the set 𝑆 = [𝑠L, 𝑠t, … 𝑠<] of soil saturation observations. Assuming uninformed prior knowledge, the prior distribution 

of model parameters 𝜃, 𝑝(𝜃), are defined by uniform distributions over the intervals in Eq. (3). The conditional probability of 

observations 𝑆 given model parameters 𝜃, 𝑝 S 𝜃 , is the likelihood function of model parameters 𝜃.  

 

2.3.2 Parameter estimation and evaluation 25 

The Metropolis-Hasting Markov chain Monte Carlo (MH-MCMC) technique is used to estimate the posterior distribution of 

𝑝 𝜃 𝑆  by drawing random model samples 𝜃v from 𝑝 𝜃  and evaluating 𝑝 S 𝜃v  (Metropolis et al., 1953; Hastings, 1970; Xu 

et al., 2006). The likelihood function of a model i, 𝑝 𝑆 𝜃v  defined by 

	𝑝 𝑆 𝜃v = 𝑝 𝑠o 𝜃v<
owL                    (5) 

where 𝑝 𝑠o 𝜃v  is the probability of observation 𝑠o given the model in Eq. (2) using parameters 𝜃v.  30 
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The MH-MCMC technique converges to a stationary distribution according to the ergodicity theorem in Markov chain 

theory. The sampling algorithm consists of repeating two steps: (1) a proposing step, in which, the algorithm generates a new 

model 𝜃v
x using a random function that is symmetric about the previously accepted model 𝜃v , and (2) a moving step, in 

which, 𝜃v
x is tested against the Metropolis criterion (𝑎) to estimate if it should be accepted or rejected. 

𝑎 =
q 𝑆 𝜃v

x

q 𝑆 𝜃v
                    (6) 5 

If 𝑎 > 1, then 𝜃v is accepted and  𝜃vPL = 𝜃v
x is used for the next sample. If 𝑎 < 1, a random number 𝑝∗ ∈ [0,1] is drawn from 

a uniform distribution and compared to 𝑎. If 𝑝∗ < 𝑎, then 𝜃v′ is accepted and 𝜃vPL = 𝜃v
x is used for the next sample. If  𝑝∗ >

𝑎 , 𝜃v′ is rejected and 𝜃vPL = 𝜃v  is used for the next sample. If 𝜃v′ is an inconsistent model in which the soil saturation 

thresholds (𝑠8, 𝑠∗) are ranked incorrectly or any of the soil water balance parameters (𝑠∗, 𝑠8, 𝐸<=> and 𝐸8) are outside of 

their defined physical bounds, the model likelihood is 0 and 𝜃v′ is never accepted. In this study, the log-likelihood was more 10 

convenient to compute than the likelihood. The symmetric function used in the proposing step was a Gaussian distribution 

with a mean value equal to the accepted model 𝜃v and a standard deviation of 1 percent of interval range for which each 

parameter is defined in Eq. (3).  

 

The value of the standard deviation of each model parameter was set after a number of test runs to generally ensure an 15 

acceptance rate between 20 and 50% (Robert and Rosenthal, 1998). Statistics of the estimated parameters in 𝜃 are obtained 

from the union of 5 run samples of 20 thousand simulations each. The burn-in period is the number of simulations after 

which the running mean and standard deviation are stabilized. We considered a burn-in period of 10 thousand simulations, 

which were discarded for each run sample.  If the acceptance rate of a run sample is below 5% or greater than 80% after the 

burn-in period, the run was discard and we concluded that the algorithm converged to a local minimum that may be 20 

physically impossible. If more than 10 run sample were performed without retaining 5 run samples, we concluded that the 

soil saturation record did not contain enough information to estimate 𝜃. Convergence was evaluated by the Gelman-Rubin 

(GR) diagnostic (Gelman and Rubin, 1992) on the final 5 run samples.  The GR diagnostic determines that the algorithm 

reaches convergence when the within-run variability (𝜎8) is roughly equal to the between-run variability (𝜎~), i.e. 𝜎8/𝜎~ 

approaches 1. For records that obtain 5 converging run samples, the mean and standard deviation of each parameter from the 25 

total of 50 thousand simulations of 𝜃 were computed. A mean analytical model of soil saturation pdf was determined by 

applying Eq. (3) with the mean values of the 50 thousand posteriori parameter estimates. The Kolmogorov-Smirnov statistic 

and Quantile-Quantile plots were used to evaluate the consistency of the mean analytical model and the empirical soil 

saturation pdfs. Calculations in this study relied on supercomputer resources through the Extreme Science and Engineering 

Discovery Environment (XSEDE) (Towns et al., 2014). Custom scripts in the Python computing language associated with 30 

this analysis are available through a gitHub repository (ciation TBD). 
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2.4 Description of sensitivity tests 

This study investigates questions of model complexity, uncertainty in parameter estimation, data availability, and scales of 

applicability through the following four levels of sensitivity analysis. Each level of analysis was repeated 10 times using soil 

moisture records at each scale and site to obtain robust median results. 

(1) We applied the inversion framework to variations of the analytical model for soil saturation pdfs (Eq. 3) of 5 

increasing complexity from one to four unknown parameters (Table 1, Fig. 2). We determined which parameters can 

be estimated with acceptable certainty and if more parsimonious analytical models for soil saturation pdfs are 

consistent with empirical pdfs and may be more robust to use.    
(2) We performed the model inversion with a range of rooting depths between 5 cm and 1 m. We determined whether 

the approach using near-surface soil saturation observations can evaluate the soil water balance over a range of 10 

deeper rooting depths 𝑍. We tested the assumption of a homogenous soil column and evaluated the sensitivity of the 

rooting depth on the estimation of soil water balance parameters. This analysis also determined whether it is 

necessary to input the exact soil moisture sensing depth, which is often unknown for larger-scale observations, to 

accurately perform the model inversion. 

(3) We performed the model inversion with subsets of each soil saturation record by randomly resampling fractions of 15 

the data down to 20 % of the record (April and September 2012). We determined the number of data points 

necessary to infer converging model parameters that best match observations and which data availability criteria 

influence the convergence and accuracy of the model inversion. 

(4) We compared co-located parameter estimates and their uncertainty at a range of scales for each site by integrating 

findings from the above levels of analysis. We determine whether the soil saturation pdf model inversion framework 20 

is applicable to point, footprint, and satellite scale observations and whether inferred parameters can be appropriate 

for ecohydrological modelling at all scales and locations. Co-located and concurrent soil saturation pdfs at a range of 

scales and their associated model parameter estimates were used to understand whether average ecohydrological 

parameters vary with scale. 

4. Results and discussion 25 

For each of the 4 selected locations, optimal analytical soil saturation pdfs consistent with empirical pdfs derived from soil 

saturation observations were successfully obtained through the Bayesian inversion framework and using a MH-MCMC 

algorithm. Figure 3 presents a comparison between empirical and analytical pdfs with associated quantile-quantile plots for 

point, footprint, and satellite scales at the 4 study sites. The (iv’) model variation was used (see Sect. 4.2) with Z equal to the 

sensing depths of 10, 20, and 5 cm for the point, footprint, and satellite scales, respectively. The Kolmogorov-Smirnov 30 

statistic ranged from 0.05 to 0.11; associated p-values were greater than 5-percent statistical significance except for the point 

and footprint scale results at US-Ton, which had a p-value of 0.02. Posteriori probability distributions of soil water balance 
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parameters (𝑠8, 𝑠∗, 𝐸<=> ) were overall well constrained. The coefficient of variation of posteriori distributions were on 

average 7 %, and ranged between 1 and 23 % for all sites and scales. 

 

4.1 Level of model complexity 

For each spatial scale and site, the 6 model variations in Table 2 were each inversed using 8 Z values ranging from 5 cm to 40 5 

cm, with 10 repeats for each case. Results were used to determine how many and which soil water loss parameters can be 

inferred from soil saturation pdfs with most certainty. Only the converging model inversions among the 80 model-site-scale 

combinations were retained and their median results were summarized in Fig. 4. The most successful parameter estimations 

were obtained using model variations (iii’), (i), and (iv’) with 97, 94, and 85 percent converging results, respectively, 

compared to model variations (ii), (iii), and (iv) with 52, 44, and 42 percent converging results. The model goodness of fit 10 

generally increased with model complexity. The average Kolmogorov-Smirnov statistic for all model (iv’) results was 0.08 

with 64 percent that were statistically significant, compared to 0.2, with only 11 percent that were statistically significant for 

model variation (i). Soil saturation pdfs were therefore more accurately described if 𝑠8 and 𝑠∗ soil threshold parameters are 

included in the soil water loss equation. Convergence and goodness of fit results were generally better for model variation 

(iii’) than (ii), suggesting that 𝑠8 was more important in the analytical equation for soil saturation pdfs and soil water loss 15 

equations than 𝑠∗. The mean coefficient of variation of the posteriori parameter values, converging cases combined, were, 5, 

6, 9, and 30 percent for 𝑠8, 𝑠∗,  𝐸<=>, and 𝐸8, respectively. The coefficient of variation of a posteriori values of a parameter 

was directly related to how sensitive the theoretical shape of soil saturation is to that parameter and inversely related to how 

accurately that parameter can be estimated. Models (iii) and (iv), in which 𝐸8 was an unknown were the least successful. 

Information may be missing to accurately estimate 𝐸8  for most sites. Results indicate that the goodness of fit of soil 20 

saturation pdfs and values of other fitted parameters were not very sensitive to the exact value of 𝐸8. The simplifying relation 

𝐸8= 0.05𝐸<=>  prevented equifinality in the analytical equation for soil saturation pdfs and reduced uncertainty in the 

inference of the other soil water loss parameters. We conclude that all parameters except 𝐸8  can be inferred with high 

certainty. Given the data available in this study, model (iv’) is the most appropriate, and only this model variation was used to 

obtain results described in the following paragraphs. 25 

 

4.2 Soil depth sensitivity 

For each spatial scale and site, the (iv’) model variation was inverted for Z values ranging from 5 cm to 1 m, with 10 repeats 

for each case. Results were used to determine whether the inference of soil water balance parameters was sensitive to the 

sensing depth and if the resulting analytical model for soil saturation pdfs can be relevant to evaluate the soil water balance 30 

for a greater soil depth. Only the converging model inversions among the 10 site-scale-depth combinations were retained and 
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their median results were summarized in Fig. 5. The soil depth used in the analytical equation for soil saturation pdfs didn’t 

generally impact model inference, parameter uncertainty, and goodness of fit. The influence of soil depth decreased as scale 

increased and was lowest at satellite scales. For the two drier sites (US-Ton and US-Me2), acceptable results were only 

obtained for shallower soil depths (below 40 cm) at the point and footprint scales. The Kolmogorov-Smirnov statistic was 

generally optimal for Z values between 15 and 60 cm. Estimated values for 𝑠8  and 𝑠∗were generally not sensitive to the 5 

considered soil depth and remained relatively stable. It is expected that 𝐸<=> would scale with soil depth to account for daily 

soil water losses from a deeper soil reservoir. Although it is conceptually more consistent to consider the actual sensing depth 

to infer a best-fit model for soil saturation pdfs, we conclude that the model used was not very sensitive to soil depth and 

methods can be applied with Z values around actual rooting depths.These findings are consistent with discussion related to 

the sensitivity of the mean soil water components to soil depth in Laio et al. (2001), and indicate that near-surface soil 10 

moisture can be used reliably to relate inferred model results to soil water dynamics in the rooting zone. These results also 

indicate that parameter estimates are not sensitive to the soil moisture sensing depth. This is particularly relevant to larger 

scale soil moisture observations, particularly from satellites, when the sensing depth is not accurately quantified.  

4.3 Data availability 

For each spatial scale and site, the (iv’) model was inversed with Z values ranging from 5 cm to 40 cm, using random 15 

subsamples of 100 to 20 percent of the April – September, 2012 record, and with 10 repeats for each case. Results were used 

to determine the minimum number of observations necessary to obtain an accurate model inversion. Only the converging 

model inversions among the 80 subsampled site-scale combinations were retained and their median results were summarized 

in Fig. 6. For all sites and scales the number of observations did not significantly impact model inference. Although the 

Kolmogorov-Smirnov statistic, parameter uncertainty and number of non-converging results increased slightly with 20 

decreasing number of observations, acceptable results were always obtained and parameter values were stable. The 

Kolmogorov-Smirnov statistic generally indicated that best agreement between analytical and empirical pdfs were obtained 

with over 75 observations. For subsamples with more than 75 daily observations the average fraction of converging model 

inversions was 85 %. Model parameter values were not sensitive to the number of observations used. Results indicate that 

there wasn’t a limiting number of observations necessary to obtain accurate parameter estimates when the mean and standard 25 

deviation of the randomly selected observations were most consistent with the full record and therefore representative of the 

rainfall characteristics. The MH-MCMC algorithm was also more likely to not reach convergence when the pdfs of the 

subsample and the full record were inconsistent. 

 

4.4 Site and scale considerations  30 

Soil saturation states at drier sites may be more controlled by soil water loss parameters, while soil saturation states at wetter 

sites may be more controlled by rainfall characteristics. Model inference at wetter sites, where the rainfall characteristics are 
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known in this study, is therefore more successful than at dry sites. Although modeled pdfs are in good agreement with 

empirical pdfs for the wetter sites (US-ARM and US-MMS), parameter estimates can have higher uncertainty because the 

shape of the soil saturation pdfs are less sensitive to the soil water loss equation parameters. For the drier sites (US-Ton and 

US-Me2), the shapes of the soil saturation pdfs are more sensitive to the soil water loss equation parameters, the range of 

plausible parameters is reduced, and uncertainty can be lower. The MH-MCMC algorithm can be adjusted, if more 5 

information were available, to account for the smaller parameter space at drier sites and improve the efficiency of the 

algorithm. In this study, we discarded results for which the MH-MCMC efficiency was lower than 5 % or greater than 80%.  

 

Similarly, soil saturation states representing larger spatial scales are less sensitive to specific site characteristics, and this 

study showed model inference at the satellite scale was generally more successful, while parameter uncertainty was greater 10 

than for point and footprint scales. Overall a greater number of analytical pdfs were statistically equal (with 95 % confidence) 

to empirical pdfs derived from satellite data than from ground-based data. Estimates of larger scale soil water balance 

parameters are more relevant to regional ecohydrological dynamics. Differences in parameter estimates between scales within 

a site may be associated with differences in soil texture properties, such as porosity and field capacity, that were determined 

separately for each record. Figure 3 also shows that co-located and concurrent soil saturation pdfs are different at each scale 15 

and suggest variability in soil water dynamics that are inferred at each scale. Differences in controlling processes between 

scales were specifically determined from the model inversion for each scale, and provided robust scale-specific parameters 

for ecohydrological modelling. This study also demonstrated the benefits of analyzing soil saturation pdfs verses time series 

to understand soil water dynamics, and in particular the appropriateness of the approach for using intermittent data such as 

satellite-scale observations. 20 

5. Conclusions 

Empirical pdfs derived from soil saturation observations provided key information to determine unknown ecohydrological 

parameters 𝑠∗, 𝑠8, 𝐸<=>, and 𝐸8. This study documented a generalizable Bayesian inversion framework to accurately infer 

parameters of the stochastic soil water balance model and their associated uncertainty using freely available rainfall and soil 

moisture observations at point, footprint and satellite scales. Optimal analytical soil saturation pdfs were consistent with 25 

empirical pdfs. Uncertainty in parameter estimates was smallest when the number of unknown parameters was reduced to 

three, assuming a constant relation between 𝐸<=> and 𝐸8 among sites. The proposed framework was found to be robust. 

Accurate results were obtained using sparse subsets of the datasets, demonstrating the advantage of analyzing soil saturation 

pdfs instead of time series. The Bayesian framework was also used to evaluate the sensitivity of the soil water balance model 

to ecohydrological parameters at varying scales and locations. We demonstrated that the form of the simple ecohydrological 30 

model for soil saturation pdfs was in agreement with observations from point, footprint, and satellite scales; however optimal 

parameters were different at each scale because co-located and concurrent soil saturation pdfs are different at each scale and 
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may result from spatial heterogeneity in soil water dynamics. Methods developed in this study can be applied in future 

studies to better understand differences in soil water dynamics at different scales and improve the scaling of ecohydrological 

processes. Estimates of 𝑠∗  and 𝑠8  were generally not sensitive to the soil depth at which data were measured. Results 

demonstrated the value of near-surface soil moisture observations to improve the characterization of soil water dynamics at 

ecosystem scales.  5 

Data and code availability 

All datasets used in this study were downloaded from publicly available sources: point-scale soil moisture and rainfall data 

are available through FLUXNET2015 (http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/);  footprint-scale soil moisture 

data are available through COSMOS (http://cosmos.hwr.arizona.edu/Probes/probelist.html); remotely-sensed soil moisture 

data are available through ESA CCI (http://www.esa-soilmoisture-cci.org/node/145); remotely sensed rainfall data are 10 

available through NASA TRMM (https://pmm.nasa.gov/data-access/downloads/trmm); global soil texture data are available 

through FAO HWSD (http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-

v12/en/). Custom scripts in the Python computing language associated with this analysis are available upon request through a 

private gitHub repository and will be made publicly available after revisions of this manuscript. (Citation and doi TBD) 
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Figure 1: Soil saturation and rainfall time series from (a) US-ARM, (b) US-MMS, (c) US-Ton, and (d) US-Me2. 
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Figure 2: Conceptual illustration of (a) soil water losses as a function of soil-
saturation states, 𝝌(𝒔),  for a loamy soil and (b) associated probability density 
functions of soil saturation, p(s), for a sub-tropical climate. Increasing levels of 5 
model complexity (i – iv) are defined in Table 2.  
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Figure 3:  Empirical verses modelled soil saturation probability distribution (p(s)) and cumulative density 
functions (CDF) for (a) US-ARM; (b) US-MMS; (c) US-TON; (d) US-Me2; (p) point scale; (f) footprint scale; (s) 
satellite scale. The mean values of the posteriori parameter distributions were used with model variation (iv’) and 
each spatial scale’s sensing depth. 5 
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Figure 4: Goodness of fit and ecohydrological model parameters inferred with increasing model complexity. 5 
Model variations i –iv are defined in Table 2; the median results of the converged model inversions are plotted; 
error bars represent the standard deviations of the posteriori distribution of 50 thousand random parameters 
samples resulting from the MH-MCMC algorithm.  
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Figure 5: Goodness of fit and ecohydrological model parameters inferred with soil depths ranging from 5 cm to 
1m. The median results of the converged model inversions are plotted; circular markers indicate that the 
Kolmogorov-Smirnov statistic is significant with a 95 % confidence level; error bars represent the standard 
deviations of the posteriori distribution of 50 thousand random parameters samples resulting from the MH-5 
MCMC algorithm. 
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Figure 6: Goodness of fit and ecohydrological model parameters inferred with decreasing number of soil saturation 
observations. The median results of the converged model inversions are plotted; circular markers indicate that the 
Kolmogorov-Smirnov statistic is significant with a 95 % confidence level; error bars represent the standard deviations 
of the posteriori distribution of 50 thousand random parameters samples resulting from the MH-MCMC algorithm. 5 
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Table 1 – Selected study sites 

Site Name ARM Southern  
Great Plains 

Morgan Monroe  
State Forest Tonzi Ranch Metolius Mature 

Ponderosa Pine 

FLUXNET2015 ID US-ARM US-MMS US-Ton US-ME2 

COSMOS ID 15 27 32 38 

Latitude 36.6058 (36.625) 39.3232 (39.375) 38.4316 (38.375) 44.4523 (44.375) 

Longitude -97.4888 (-97.375) -86.4131 (-86.375) -120.966 (-120.87) -97.4888 (-97.375) 

Elevation [m] 314 275 177 1253 

Vegetation Crops and grassland Deciduous forest Oak savanna Ponderosa pine forest 

MAT [°C] 14.8 10.9 15.8 6.3 

MAP [mm] 843 1032 559 523 

Soil Texture Loam Loam Loam Sandy Loam 

n [-] 0.35(p), 0.34(f), 0.46(s) 0.46(p), 0.66(f), 0.43(s) 0.53(p), 0.39(f), 0.43(s) 0.36(p), 0.59(f), 0.41(s) 

Ks [mm day-1] 317 317 317 622 

b [-] 4.55 4.55 4.55 3.11 

sh [-] 0.06 0.06 0.06 0.09 

sfc [-] 0.81(p), 0.75(f), 0.57(s) 0.93(p), 0.86(f), 0.72(s) 0.94(p), 0.60(f), 0.68(s) 0.94(p), 0.60(f), 0.68(s) 

α [mm day-1] 26.9(p, f), 24.5(s) 10.7(p, f), 13.3(s) 9.7(p, f), 14.6(s) 4.8(p, f), 3.0(s) 

λ [day-1] 0.05(p, f), 0.10(s) 0.22(p, f), 0.20(s) 0.07(p, f), 0.04(s) 0.20(p, f), 0.39(s) 

Latitude and longitude in parenthesis correspond the centroid of the satellite area associated with the site location; MAT, mean annual 
temperature from long-term FLUXNET2015 data; MAP, mean annual precipitation from long-term FLUXNET2015 data; Soil texture taken 
from the HWSD; n, porosity; Ks, saturated soil hydraulic conductivity; b, pore size distribution index; sh, hydroscopic point; sfc, field 
capacity; α, observed average daily rainfall depth (April – September, 2012); λ, observed average daily rainfall frequency (April – 
September, 2012; superscripts (p), (f), and (s) correspond to values used for the point-, footprint-, and satellite-scale analysis. Citations for each 
FLUXNET2015 site: Sebastien Biraud (2002–) AmeriFlux US-ARM ARM Southern Great Plains site- Lamont, 10.17190/AMF/1246027; 
Kim Novick, Rich Phillips (1999–) AmeriFlux US-MMS Morgan Monroe State Forest, 10.17190/AMF/1246080; Bev Law (2002–) 
AmeriFlux US-Me2 Metolius mature ponderosa pine, 10.17190/AMF/1246076; Dennis Baldocchi (2001–) AmeriFlux US-Ton Tonzi Ranch, 
10.17190/AMF/1245971 
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Table 2. Model variations 

 i 𝒔𝒘 𝒔∗ 𝑬𝒎𝒂𝒙 𝑬𝒘 

(i)  1 𝑠9 𝑠56 – 0 

(ii) 2 𝑠9 – – 0 

(iii’) 2 – 𝑠56 – 0.05𝐸<=> 

(iii) 3 – 𝑠56 – – 

(iv’) 3 – – – 0.05𝐸<=> 

(iv) 4 – – – – 

i, number of unknown parameters; –, indicates that a parameter is inferred 
from the model inversion; sw, field capacity; s*, point of incipient stomatal 
closure; sh, hydroscopic point; sfc, field capacity; 𝐸<=> , maximum 
evapotranspiration; 𝐸8, evaporation at the wilting point 
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